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We study, in the ensemble of constant particle number, processes in which a cluster of particles is annihilated
and particles are created catalytically in active sites. In this ensemble, particles belonging to a cluster of �
particles jump to � distinct active sites. As examples of our prescription, we analyze numerically three non-
equilibrium systems that annihilate cluster of particles that are identified as conserved versions of the pair
annihilation contact model, triplet annihilation contact model, and pair contact process. We show also how to
set up the constant particle number ensemble from the constant rate ensemble.
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I. INTRODUCTION

The use of distinct ensembles in equilibrium statistical
mechanics, in which systems are described by a given
Hamiltonian, is a well established concept �1�. There is a
standard procedure for passing from a given ensemble to
another. For nonequilibrium systems �2�, on the other hand,
this procedure cannot be used, since they are not described
by a Hamiltonian and therefore, their probability distribution
are not known a priori. In most cases nonequilibrium sys-
tems are defined in a constant rate ensemble, �which we call
ordinary version�, but the possibility of using another en-
semble was put forward by Ziff and Brosillow �3� when they
used a constant coverage ensemble in their study of an irre-
versible surface-reaction model. Subsequently, Tomé and de
Oliveira �4� introduced the contact process in the ensemble
of constant number of particles.

In the conserved contact process �CCP� �4�, a particle
chosen at random leaves its place and jumps to one of the
many active sites of the lattice. The CCP displays properties
that in the thermodynamic limit are identical to the ordinary
contact process. Hilhorst and van Wijland �5� provided a
proof of the equivalence between the constant rate and the
constant particle number ensembles for the contact process.
Later, de Oliveira �6� extended the proof for any reaction
process that annihilate one particle �4,7,8�. Sometimes the
use of the conserved version is more appropriate than the
ordinary version as for example in the study of a first-order
transition. This advantage has been exploited by Ziff and
Brosilow �3�, Loscar and Albano �9� who studied hysteretic
effects in a model that describes the CO+NO reaction, and
more recently by Fiore and de Oliveira �8�.

Here, we analyze in the ensemble of constant particle
number one-dimensional models whose ordinary versions
have been previously studied. These models are the pair an-
nihilation contact model �PAM� �10�, the triplet annihilation
contact model �TAM� �10,11�, and the pair contact process
�PCP� �12–14�. In these models, a cluster of particles is
spontaneously annihilated and particles are catalytically cre-
ated in active sites. Active sites are empty sites surrounded
by a neighborhood of particles.

II. TRANSITION RATES

Consider a site i of regular lattice. To each site i of the
lattice we attach an occupation variable �i which takes the

values 0 or 1 according whether the site i is empty or occu-
pied by a particle. In the constant rate ensemble, the usual
process is composed of creation of a single particle �0→1�
with transition rate wi

c=kc�i
c, and annihilation of a cluster of

� particles in a row �111. . .1→000. . .0� with transition rate
wi

a=ka�i
a. The transition rate wi

c is the probability per unit
time of creating a particle at the site i. The transition rate wi

a

is the probability per unit time of annihilating a particle at
the site i. The total transition rate for these two reaction
processes is given by

wi = wi
a + wi

c = ka�i
a + kc�i

c. �1�

The quantities �i
a and �i

c will be defined according to the
specific model and they depend on the local configuration of
particles. The quantities ka and kc, which we call the
strengths of the annihilation and creation processes, are
parameters that give the weight of each subprocess. Diffu-
sion of particles consists of a particle hopping to its nearest
neighbor. In diffusive models, the diffusion of particles and
the reaction process occur with probability D� and 1−D�,
respectively.

In the ensemble of constant particle number, the jumping
process and the diffusion of particles are chosen with prob-
abilities 1−D and D, respectively. In the hopping step, an
occupied site �i=1 and its nearest next neighbor � j =0 inter-
change their occupation variables, whereas in the jumping
step, � adjacent particles leave their places and arrive at �
active sites. Thus, in the ensemble of constant particle num-
ber, both the creation and annihilation of particles are re-
placed by � jumping processes.

III. EQUIVALENCE OF ENSEMBLES

In the construction of conserved models we have to be
concerned only with the creation and annihilation processes
since the diffusion process already conserves the particle
number. In the case of processes that annihilate a pair of
particles �PAM and PCP�, the jumping process occurs with
rate �i

a� j
c�k

c. In the case of annihilation of a triplet of neigh-
boring particles �TAM�, it occurs with rate �i

a� j
c�k

c�m
c .

To demonstrate that this conserved dynamics is equivalent
to the ordinary dynamics described by Eq. �1� we follow the
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same reasoning given by de Oliveira �6�. Let us consider the
specific case of models that annihilate two particles. In this
case, two particles, belonging to the neighborhood of site i,
chosen at random, jump to two distinct active sites, j and k,
also chosen at random. The jumping process occurs with rate
�i,j,k=�i

a� j
c�k

c /L2 where L is the number of sites of the lat-
tice. Let us evaluate the total rate � j,k�i,j,k in which particles
leave the neighborhood of site i. In the thermodynamic limit,
the sums � j� j

c /L and �k�k
c /L approach, by the law of large

numbers, the averages �� j
c� and ��k

c�, respectively. Therefore
we have � j,k�i,j,k= �� j

c���k
c��i

a. Similarly, the total rate at
which a particle arrives at the site j is ��i

a���k
c�� j

c and the
total rate at which a particle gets to the site k is ��i

a��� j
c��k

c.
Comparing these results with the rate �1�, we see that kc

and ka should be proportional to 2��i
a���k

c� and �� j
c���k

c�,
respectively. Defining � as the ratio ka /kc, we can write the
relation

� =
�� j

c�
2��i

a�
, �2�

valid for any process that annihilates a pair of particles in the
ensemble of constant particle number.

When we add a diffusive step, the ensembles are also
equivalent, but the diffusion rate D� used in the constant rate
ensemble will not have, in general, the same value of diffu-
sion rate D that is used in the constant particle number en-
semble. A relation between the rates D� and D is given by

1 − D�

D�
= 2

1 − D

D

�� j
c�

�

��i
a�

�
, �3�

where the factor 1 /�2 comes from the ratio between the oc-
currences of diffusive process and the jumping process.

Generalizing for an arbitrary cluster of � particles, Eqs.
�2� and �3� become

� =
�� j

c�
���i

a�
�4�

and

1 − D�

D�
=

1 − D

D
��� j

c��−1��i
a��−�, �5�

respectively. In the particular case of �=1, we have D=D�
because ��i

a�= ��i�=�, as it has already been obtained and
used in the simulations of diffusive contact processes �6,8�.

IV. PAIR ANNIHILATION CONTACT MODEL

A. Constant rate ensemble

In the ordinary PAM, the creation of particles is catalytic
and a pair of particles is annihilated spontaneously. It is rep-
resented by the chemical reactions

0 + A → A + A , �6�

A + A → 0 + 0, �7�

describing the catalytic creation and annihilation of a pair of
particles, respectively. The rates �i

c and �i
a in Eq. �1� are

given by

�i
c = �1 − �i�

1

z
�

�

�i+�, �8�

where the summation is over the z nearest neighbor sites and

�i
a = �i�i+1. �9�

The strengths of the creation and annihilation processes are
given by kc=1 and ka=�.

For values of ���c, the system is constrained into
the absorbing state �without particles�, whereas for ���c we
have an active state in which particles are created and
pairs of neighboring particles are annihilated. A continuous
phase transition between these two regimes occurs at
�=�c=0.186 22�3� �10�. Close to the critical point, the order
parameter �here the density of particles �� follows a power
law

� � ��c − ��	, �10�

where 	=0.276 5�1�. The PAM is found to belong to the
directed percolation �DP� universality class �2�.

B. Constant particle number ensemble

The Monte Carlo simulation of the conserved PAM is
performed as follows. The jumping process and the diffusive
process are chosen with probabilities 1−D and D, respec-
tively. If the jumping process is chosen, then a pair of neigh-
boring particles is chosen at random. Next, we choose two
empty sites each one surrounded by at least one particle. The
two particles belonging to the selected pair jump to these two
active sites. If the diffusive process is chosen, then a particle
chosen randomly is moved to one of its neighboring sites,
provided it is empty. In this ensemble, the rate � is evaluated
by using formula �2�, where the quantities �i

a and �i
c are

given by Eqs. �8� and �9�. To determine the critical rate �c
we have simulated the conserved PAM in the subcritical re-
gime. In this regime we have an infinite lattice and a finite
particle number n. The critical value �c is obtained by as-
suming the asymptotic relation

� − �c �
1

n
. �11�

A linear extrapolation of � versus n−1 gives �c, since when
n→
 we have �→�c. The behavior of � versus n−1 for the
conserved PAM in the subcritical regime is shown in Fig. 1.
In the limit of n→
, we obtain �c=0.186 24�7�, in excellent
agreement with the value �c=0.186 22�3� obtained from its
ordinary version �10�.

According to Vicsek �15�, in the critical point, we have a
formation of fractal clusters. To calculate the fractal dimen-
sion for a fixed D, we have measured the maximum distance
R between two particles of the system as a function of the
particle number n.
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Following Bröker and Grassberger �16�, we assume the
following asymptotic behavior:

R � n1/dF, �12�

where dF is the fractal dimension. The fractal dimension is
related to the survival probability exponent �, the mean num-
ber of particles exponent �, and the dynamic exponent z by
dF=2��+�� /z �2�. In Fig. 2 we show a log-log plot of R
versus n for the conserved PAM for some values of the dif-
fusion rate D. The values of 1 /dF are consistent with the
value 1.338�6�, obtained for the CCP �7�.

Using Eq. �11� we have built the phase diagram shown in
Fig. 3 for several values of diffusion rate D. Increasing the

diffusion rate, we expect an increase in the value of �c, since
by dispersing particles the density of pairs of neighboring
particles ��i

a� decreases whereas the density of active sites
��i

c� increases. Our results show that for sufficiently rapid
diffusion, D→1, the critical value of �c increases without
limit, that is, �c→
, in agreement with the results obtained
by Dickman �10�.

To determine the exponent 	, we have simulated the con-
served PAM in the supercritical regime for some values of
the diffusion rate D. In this regime, the density �=n /L is
kept fixed for a size system L. We have used a lattice with
L=10 000 sites and a number of Monte Carlo steps ranging
from 106 to 107. The exponent 	 is obtained from the log-log
plot of �	�c−� versus � as shown in Fig. 4. We used the
values of �c calculated by using the equation �11�. For
D=0, we obtained 1/	=3.61�3� that is in excellent agree-

FIG. 1. Values of � versus the number of particles n for the
conserved PAM in the absence of diffusion for an infinite system.
The line corresponds to the linear extrapolation using Eq. �11�.

FIG. 2. Log-log plot of the size system R, in the subcritical
regime, as a function of n̄ where n̄ is the particle number n for the
conserved PAM and the conserved TAM, and the number of pairs of
neighboring particles np for the conserved PCP. For comparison, we
show a straight line with slope 1.338.

FIG. 3. Phase diagram for the conserved PAM in D versus �
space. The supercritical and subcritical regimes are separated by a
critical line.

FIG. 4. Log-log plot of �	�c−� versus the density �, in the
supercritical regime for the conserved PAM for some values of
diffusion rate. The straight line has a slope 3.61.
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ment with the value 1/	=3.61�1� obtained for the CCP �4�.
The simulations performed at D=0.1 and D=0.3 give expo-
nents also compatible with this value.

V. TRIPLET ANNIHILATION CONTACT MODEL

A. Constant rate ensemble

The ordinary TAM is composed of the creation of par-
ticles and annihilation of three neighboring particles. It is
represented by the chemical reactions

0 + A → A + A , �13�

A + A + A → 0 + 0 + 0, �14�

describing the catalytic creation and annihilation of a triplet
of particles, respectively. The quantity �i

c is also given by
Eq. �8� and the rate �i

a is given by

�i
a = �i−1�i�i+1. �15�

Without diffusion, a continuous phase transition to an ab-
sorbing state occurs at �c=0.1488�2� �10,11� with critical
exponent 	=0.2765.

The competition between diffusion and reaction process
may bring great changes in the phase diagram. For example,
in the multiple-creation contact processes, the transition be-
comes first order for high enough values of diffusion �4,8�. In
the PCP, several works have reported a change in the univer-
sality class for nonzero values of diffusion rate. For the or-
dinary TAM, previous works �10,11� have shown that in the
presence of diffusion, the system exhibits a reentrant phase
diagram as can be seen in Fig. 6.

In Refs. �10,11�, the processes of diffusion, creation,
and annihilation are chosen with probabilities D*,
�1−D*�� / ��+1�, and �1−D*� / ��+1�, respectively. To com-
pare ordinary results with ours, it is necessary to convert the
parameters. The relations between D* and D�, � and � are
given by

� =
1

�
�16�

and

D* =
D�

D� + �1 + ���1 − D��
. �17�

For values of the diffusion rate D* higher than
Dmax

* =0.587, there is no phase transition and the system dis-
plays only the active state. For D*�Dmax

* , an active state is
also possible for very small values of �. This happens be-
cause there are few isolated particles. Since the system anni-
hilates only triplets of neighboring particles, these sparse
particles are able to “survive.” On other hand, the probability
that a new particle is created is very low because � is very
small.

B. Constant particle number ensemble

The Monte Carlo simulation of the conserved TAM is
performed as follows: The jumping process and the diffusive

process are chosen with probabilities 1−D and D, respec-
tively. If the jumping process is chosen, then a triplet of
neighboring particles is chosen at random. Next, we choose
three empty sites each one surrounded by at least one par-
ticle. The three particles belonging to the selected triplet
jump to these three active sites. If the diffusive process is
chosen, then a particle chosen randomly is moved to one of
its neighboring site, provided it is empty. The quantities �i

c

and �i
a are calculated by using Eqs. �8� and �15�. The rate �

is evaluated using formula �4� with �=3.
To determine the critical value �c we have simulated the

conserved TAM in the subcritical regime. We assume a be-
havior given by Eq. �11� for large particle number n. For
D=0, the values of � versus n are shown in Fig. 5. The linear
extrapolation gives the critical rate �c=0.148 98�5�, which
agrees very well with the value �c=0.1488�2� obtained for
the ordinary version �10�.

For the values of diffusion used here, we have also ob-
tained values of 1 /dF consistent with 1.338�6�, as shown in
Fig. 2.

Using the same procedure for nonzero values of D
we have built the phase diagram shown in Fig. 6. We used
Eqs. �5� and �17� to convert the rates. The results obtained
by Dickman �10,11� are also plotted in the same figure for
comparison.

Our results are in good agreement with those obtained for
the ordinary ensemble. For example, the results obtained by
Dickman �11� for the maximum critical diffusion Dmax

* is
0.587 and its respective critical creation rate �c is 0.1. Our
results for this point of the phase diagram are Dmax

* =0.589
and �c=0.11. Concerning the reentrant phase, the conserved
ensemble seems to be inappropriate to determine the transi-
tion line. In the ordinary ensemble, isolated particles create
new particles leading to the appearance of triplet even at very
small rates and small number of particles. In the conserved
ensemble, on the other hand, it is necessary the existence of
at least one triplet for the occurrence of a creation-
annihilation process. In the absence of three adjacent par-

FIG. 5. Values of � versus the number of particles n for the
conserved TAM in the absence of diffusion for an infinite system.
The line corresponds to the linear extrapolation using Eq. �11�.
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ticles, only the diffusive process will produce a triplet. If the
particles are scattered the reunion of three particles may not
occur. In this case the determination of � will be affected by
low statistics. We remark that the reentrant phase diagram for
the TAM was confirmed by time-dependent numerical simu-
lations �11�, which critical exponents belong to the DP uni-
versality class.

In Fig. 7 we show the log-log plot of �	�c−� versus �
for some values of diffusion rate in the supercritical regime
using a lattice of size L=10 000 and from 106 to 107

Monte Carlo steps to evaluate the averages. For D=0, we
obtained 1/	=3.60�3� which is in agreement with the
value 1/	=3.61�1� obtained for the CCP �4�. The values for
1 /	 obtained from simulations at D=0.05 and 0.1 are also
compatible with this value.

VI. PAIR CONTACT PROCESS

A. Constant rate ensemble

The ordinary PCP �12� is a nonequilibrium model which,
like the contact process �CP�, exhibits a phase transition to
an absorbing state, but differently from this one, the PCP
possesses infinitely absorbing states. Numerical and theoret-
ical studies indicate that the PCP �without diffusion� also
belongs to the DP universality class.

The PCP is represented by the chemical reactions

0 + A + A → A + A + A , �18�

A + A → 0 + 0, �19�

describing the catalytic creation of a particle and annihilation
of a pair of particles, respectively. Notice that it is necessary
to have two particles to create a new particle.

The PCP is defined by the following rules. A pair of
neighboring particles is chosen at random. With probability p
it is annihilated and with probability 1− p a new particle is
created in one of its nearest neighbor sites. The dynamics is
governed by pairs of neighboring particles, instead of iso-
lated particles. As a consequence, any configuration absent
of pairs of neighboring particles is absorbing. The order pa-
rameter is the density of pairs of neighboring particles, in-
stead of the density of particles.

Several studies �12–14,17� show that the one-dimensional
PCP exhibits a second order transition to an absorbing state
at pc=0.077 090�5� �17�. Close to the critical point the den-
sity of pairs of neighboring particles �p follows the power
law behavior with an exponent 	=0.2765 �14�. The expo-
nents �, �, and z were also obtained for the PCP �13� and
they are compatible with the typical values of the DP univer-
sality class.

Our aim here consists in showing that the PCP can be also
described by a dynamics that conserves the particle number.
To compare our results with ordinary versions, we should
note that the strengths of the creation and annihilation rates
kc and ka are proportional to 1− p and p, respectively. There-
fore �=ka /kc= p / �1− p� from which follows the relation be-
tween the parameters p and � used here:

p =
�

� + 1
. �20�

B. Constant particle number ensemble

The Monte Carlo simulation of the conserved PCP with-
out diffusion is performed as follows: A pair of neighboring
particles is selected at random. Next, two active sites are
chosen at random. Here, active sites are empty sites sur-
rounded by at least a pair of neighboring particles at the
same side. The particles belonging to the selected pair jump
to the two chosen active sites. The rate � is evaluated using
Eq. �2� where the creation rate is given by

�i
c = �1 − �i�

1

z
�

�

�i+��i+2�, �21�

and the annihilation rate �i
a is given by the expression �9�.

FIG. 6. Phase diagram for the conserved TAM �full circles� in
D* versus �1/2 space. The supercritical and subcritical regimes are
separated by a critical line.. For comparison, we show the results
obtained by Dickman �squares�.

FIG. 7. Log-log plot of �	�c−� versus the density �, in the
supercritical regime for the conserved TAM for some values of
diffusion rate. The straight line has a slope 3.61.
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To compare the results coming from distinct ensembles,
we have also simulated the ordinary pair contact process in
one dimension. For both ensembles, we used a lattice of size
L=10 000 and from 106 to 107 Monte Carlo steps to evaluate
the averages. For example, simulating the ordinary version
for the value of rate �=0.01 we obtained the mean density of
particles �=0.969 02�1� and the mean density of pairs
of neighboring particles �p=0.949 20�2�. In the conserved
version for �=0.969 00 we obtain the averages
�p=0.949 18�2� and �=0.010 0�1�. Small discrepancies are
due the fact that the system size is finite.

In absence of diffusion, any configuration without pairs of
neighboring particles is absorbing and, therefore the con-
served PCP also possesses infinitely absorbing states.

To determine the critical rate �c we have studied the sys-
tem in the subcritical regime. Since a configuration absent of
pairs of neighboring particles is absorbing, during the simu-
lations the system may fall into an absorbing state. Whenever
this happens, we allow isolated particles to jump to empty
sites surrounded by one particle, in order to “create” pairs of
neighboring particles. In Fig. 8 we show the number of pairs
of neighboring particles and its respective value of � in
the subcritical regime. An linear extrapolation in np

−1 gives
�c=0.083 53�5�. Using Eq. �20� we find pc=0.077 09�5�
which is in excellent agreement with the value
pc=0.077 090�5� for the ordinary pair contact process �17�.

To calculate the fractal dimension dF for the conserved
PCP, we adopted the following procedure. We measured the

maximum distance R between two pairs of neighboring par-
ticles of a subsystem of fixed size L. The log-log plot of R
versus np is shown in Fig. 2. The value of the inverse of the
fractal dimension is 1 /dF=1.33�1�, in very good agreement
with the value 1.338�6� �7�.

Figure 9 shows a log-log plot of �	�c−� versus the
density �p. The slope of the straight lines fitted to the data
points for the conserved PCP has slope 3.61�3�, in good
agreement with the value 3.61�1�, obtained for the CCP.

VII. CONCLUSION

We have analyzed, by numerical simulations, three one-
dimensional nonequilibrium models in which particles be-
longing to a cluster of � particles jump to � distinct active
sites. They are conserved versions of models originally de-
fined in the constant rate ensemble. Our approach is general
in the sense that any process in which the process of creation
and annihilation of particles are mutually exclusive can be
described by a dynamics that conserves the number of par-
ticles. Our results for the three models studied here show that
not only universal quantities but also nonuniversal param-
eters are in excellent agreement with their respective ordi-
nary versions.
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FIG. 8. Values of � versus the number of pairs of neighboring
particles np for the conserved PCP in the absence of diffusion for an
infinite system. The line corresponds to the linear extrapolation us-
ing Eq. �11�.

FIG. 9. Log-log plot of �	�c−� versus the density of pairs of
neighboring particles �p, in the supercritical regime for the con-
served PCP in the absence of diffusion. The straight line has a slope
3.61.
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